Investigation of the role of the substrate metal ion in the yeast inorganic pyrophosphatase reaction

Su-Jen Ting and Debra Dunaway-Mariano*

Department of Chemistry, University of Maryland, College Park, MD 20742, USA

Received 5 October 1983; revised version received 31 October 1983

The substrate activities of a series of tripositive metal ion-pyrophosphate complexes with yeast inorganic pyrophosphatase were examined. While the Michaelis constants for these complexes were shown to be between one and two orders of magnitude greater than that of the natural substrate, $[Mg(H_2O)_4PP_i]^{2-}$, the turnover numbers were in general comparable to that of $[Mg(H_2O)_4PP_i]^{2-}$. These data suggest that the nature of the metal ion cofactor effects substrate binding but in most cases not catalysis. Thus, the role of the metal ion in catalysis is probably restricted to that of an electron sink.

Yeast inorganic pyrophosphatase

Metal ion cofactor

Substrate activation

1. INTRODUCTION

Yeast inorganic pyrophosphatase catalyzes the hydrolysis of pyrophosphate (PPi) to orthophosphate (Pi). Previous studies have shown that 3 divalent cations per active site are required for catalysis ([1] and unpublished). Two of these metal ions bind directly to the enzyme while the third cofactor coordinates with the PPi (unpublished). The in vivo substrate, $[Mg(H_2O)_4PP_i]^{2-}$ is fully ionized [2] and P1,P2-bidentate in structure [2,3]. Previously we examined the role of the substrate metal ion in substrate binding [3]. We examine here the potential role of the substrate metal ion in activation of the substrate for phosphoryl transfer to water by using a series of tripositive metal ion-PP_i complexes as probes of enzyme substrate specificity.

2. MATERIALS AND METHODS

Pyrophosphatase was purified according to the modified [4] method of [5]. The enzyme used in these experiments migrated as a single band on SDS-polyacrylamide gel electrophoresis gels (7.5%) acrylamide) and had an activity of 690 μ mol

* To whom correspondence should be addressed

P_i/min per mg protein at pH 7.5. Na₄[³²P]PP_i was purchased from New England Nuclear and all buffers were obtained from Sigma. All metal ions (Alfa Ventron) were used as their perchlorate salts except Mg2+ and Al3+ which were used as their chloride salts. Stock solutions of MgPPi or M(III)PP_i complexes were prepared by adding one equivalent of metal ion to PPi. Aliquots from freshly prepared stock solutions were added to reaction mixtures 50 mM in K⁺-Pipes (pH 7.0) (1,4-piperazinediethanesulfonate) and 1 mM in MgCl₂. Reactions were initiated by addition of pyrophosphatase to the 1 ml reaction mixtures at 25°C and terminated by the addition of 60 µl of 6 N HCl. Reaction mixtures were assayed for ³²P_i as in [2]. Control reactions, lacking enzyme, were run concurrently in order to insure that P_i formation was exclusively enzyme catalyzed.

Initial velocity data were gathered using metal-PP_i complexes at concentration ranges 0.5-5-fold their $K_{\rm m}$ value. $K_{\rm m}$ and $V_{\rm m}$ values were evaluated from Lineweaver-Burk plots in which the inverse of the initial velocity was plotted against the inverse of the initial total PP_i concentration. The $K_{\rm i}$ value of ScPP_i was calculated from initial velocity data obtained from an experiment in which ScPP_i was tested as a competitive inhibitor vs MgPP_i.

3. RESULTS AND DISCUSSION

The present studies were designed to probe the role of the metal ion cofactor associated with PPi in the pyrophosphatase-catalyzed hydrolysis reaction by examining the specificity of the enzyme towards a series of tripositive metal ion-PP_i complexes. The in vivo cofactor for pyrophosphatase is Mg²⁺. Not only does an Mg²⁺ coordinate to PP_i to form the active substrate, P¹, P²-bidentate [Mg(H₂O)₄PP_i]²⁻ [2,3] but two additional Mg²⁺ coordinate to cofactor sites present on the enzyme. Previous studies have shown that only Mg²⁺, Mn²⁺, Co²⁺ and Zn²⁺ can function in all 3 cofactor roles [2,6]. Tripositive metal ions are not only unable to function in all 3 roles [6] but also have been shown to be incapable of serving in the roles of the two enzyme bound cofactors [7]. The M³⁺ ions are in fact competitive inhibitors vs Mg²⁺ for the two enzyme cofactor sites and have stability constants which range from 1×10^4 – 1×10^6 M⁻¹ [7]. Thus, in order to test the substrate activity of the M(III)PP_i complexes Mg²⁺ had to be included in the reaction mixture to fulfill the requirements at the two cofactor sites on the enzyme. Because the stability constant of MgPP_i ($\sim 1 \times 10^6 \,\mathrm{M}^{-1}$) is so much smaller than that of the M(III)PPi complexes ($\sim 1 \times 10^{17} \text{ M}^{-1}$) [8] compared to stability constants describing Mg^{2+} binding to the enzyme ($\sim 3 \times 10^3$ –3 $\times 10^4$ M⁻¹) vs M³⁺ binding to the enzyme ($\sim 1 \times 10^4 - 1 \times 10^6 \text{ M}^{-1}$), M³⁺ and PP_i could be added in 1:1 ratio at concentrations ranging from 0.070-3.0 mM to reaction mixtures containing 1 mM MgCl₂ with practically exclusive formation of M(III)PP_i and enzyme-Mg complexes. Table 1 shows $V_{\rm m}$ and $K_{\rm m}$ values measured for PP_i varied in constant ratio with M³⁺ in the presence of 1 mM ${\rm Mg}^{2+}$ as well as the $V_{\rm m}$ and $K_{\rm m}$ values for PP_i varied in constant ratio with Mg²⁺ in the presence of 1 mM excess Mg²⁺. In any given experiment we can calculate on the basis of the reported MgPP_i and M(III)PP_i stability constants that the concentration of MgPP_i present in the reaction mixture containing the M^{3+} is $\sim 1 \times$ 10¹⁰-fold less than that in the same reaction mixture lacking M³⁺. Thus, if the observed P_i formation derives primarily from the turnover of the MgPP_i present in the M(III)PP_i reaction mixture then the apparent K_m measured should be at a minimum (since we are ignoring input from the

Table 1

The relative V_m and K_m values measured for pyrophosphate in the presence of 1 mM free Mg²⁺ and a stoichiometric amount of Mg²⁺ or tripositive metal ion

	Relative V _{max}	$K_{\rm m}^{\rm a}~({\rm mM})$	Ionic radius ^c
Mg(H ₂ O) ₄ PP _i	1.00	0.01	0.720
$TbPP_{i}$	1.00	0.48	0.923
$LuPP_i$	1.00	0.21	0.861
$DyPP_1$	0.93	0.27	0.910
ErPP,	0.88	0.55	0.890
$YbPP_i$	0.87	0.15	0.868
$EuPP_1$	0.83	0.55	0.905
$HoPP_i$	0.79	0.26	0.900
LaPP ₁	0.77	0.40	1.032
\mathbf{YPP}_{1}	0.74	0.28	0.900
$NdPP_{i}$	0.59	0.38	0.985
$CePP_{i}$	0.55	0.55	1.010
$GdPP_1$	0.52	1.0	0.938
$InPP_i$	0.29	0.17	0.810
$AlPP_i$	0.18	0.16	0.500
ScPP ₁	0.0000	0.008^{b}	0.745

 $^{^{}a}$ SE $\sim \pm 10\%$

competitive inhibition by the M(III)PP_i complex) 1×10^{10} times that of the true $K_{\rm m}$ for MgPP_i (0.01 mM) or $\sim 1 \times 10^8$ mM. As indicated in table 1 the apparent $K_{\rm m}$ values measured fall in the range of 0.1-1.0 mM and therefore we can conclude with reasonable certainty that the P_i formation observed in the presence of the M³⁺ ions derives predominantly from the substrate activity of the M(III)PP_i complexes and that these apparent $K_{\rm m}$ values actually represent true $K_{\rm m}$ values for these complexes.

The K_m values for the M(III)PP_i complexes fall in a range 1-2 orders of magnitude larger than the K_m value of MgPP_i. This result is not surprising since the M(III)PP_i complex possess only a single negative charge while the natural substrate, MgPP_i possesses a net of two negative charges. What we did find surprising is that with the exception of the ScPP_i turnover numbers for the M(III) complexes (table 1) are either identical to or quite close to that of MgPP_i. This result is in contrast to the data obtained for yeast hexokinase which showed that

^b K_i value for ScPP_i as a competitive inhibitor vs MgPP₁ at pH 7.0

^c Effective ionic radius of the hydrated metal ion [10]

Scheme 1.

M³⁺ complexes of ATP are tight inhibitors but are not substrates for the enzyme [9]. Stability constant data (K_s for M(III)PP_i $\approx 1 \times 10^{17}$ while K_s for binding PP_i to $M(III)PP_i \approx 1 \times 10^{1}-1 \times 10^{2}$ M^{-1} and K_s for binding M(III) to M(III)PP_i \approx 1×10^2 – 1×10^3) [8] suggest that under conditions where M³⁺ and PP_i are present in a 1:1 ratio the predominant complex in solution is M(III)PPi. Unlike the MgPP_i complex, however, the M(III)PP_i complex does not necessarily have a coordination number of 6 but may, for example, exist in solution and perhaps be absorbed onto the enzyme in the form $M(III)(H_2O)_nPP_i$ where n = 4-7. In addition, because the radius of the M³⁺ ion is significantly larger than that of Mg²⁺ we might expect that the geometries of the chelate rings formed between the M3+ ions and PP; will differ significantly from that of MgPPi. Since neither difference in the M(III)PPi vs MgPPi complex is recognized by the enzyme it may be reasonable to conclude that the role of the substrate metal ion is, as indicated in scheme 1, simply that of an electron sink. Since the metal ion is coordinated to both phosphoryl moieties it can serve to activate the phosphorus for nucleophilic attack by water as well as stabilize the phosphate anion displaced during the reaction.

Why ScPP_i is not a substrate for pyrophosphatase is presently unclear to us. Of the tripositive metal ions Sc³⁺ is closest to Mg²⁺ in size and like MgPP_i, ScPP_i binds very tightly to the enzyme. Substrate activity may be in some way related to the ratio of charge to radius of the metal ion.

ACKNOWLEDGEMENTS

This work was supported by American Heart Grant-in-Aid 83918 and by NIH Career Development Award (ES-00111) to D.D.-M.

REFERENCES

- [1] Springs, B., Welsh, K.M. and Cooperman, B.S. (1981) Biochemistry 20, 6384.
- [2] Knight, W.B., Fitts, S.W. and Dunaway-Mariano, D. (1981) Biochemistry 20, 4079.
- [3] Knight, W.B., Ting, S.-J., Chuang, S., Dunaway-Mariano, D., Haromy, T. and Sundaralingam, M. (1983) Arch. Biochem. Biophys. 227, in press.
- [4] Bond, M.W. (1979) Ph.D. Thesis, University of Pennsylvania.
- [5] Cooperman, B.S., Chia, N.Y., Bruckmann, R.H., Bunick, G.J. and McKenna, G.P. (1973) Biochemistry 12, 1665.
- [6] Butler, L.G. and Sperow, J.W. (1977) Bioinorg. Chem. 7, 141.
- [7] Ting, S.-J. and Dunaway-Mariano (1983) Biochemistry 22, 7A.
- [8] Smith, R.M. and Martell, A.E. (1976) Critical Stability Constants, vol. 4, pp. 59-60, Plenum, New York.
- [9] Viola, R.E., Morrison, J.F. and Cleland, W.W. (1980) Biochemistry 19, 3131.
- [10] Shannon, R.D. (1976) Acta Crystallogr. Sect. A 32, 751.